ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра общей и теоретической физики

Дисциплина: Механика

Контрольная работа \mathbb{N}_{2} 2

<u>Тема:</u> «Динамика материальной точки. Законы Ньютона»

(пример контрольной работы)

Составил ассистент кафедры ОТФ СамГУ Филиппов Ю.П.

СамГУ-Самара 2004 год

Вариант № 1

- 1. Найти вектор скорости, модуль и направление силы, действующей на частицу массы m, при ее движении в плоскости xy по закону: $x=At+B\cos(\omega t),\ y=At^2+C\sin(\omega t),\ \text{где }A,\,B,\,C,\,\omega$ положительные постоянные.
- **2**. Пуля, пробив доску толщиной h, изменила свою скорость от V_0 до V. Найти время движения пули в доске, считая силу сопротивления пропорциональной квадрату скорости.
- 3. Самолет делает "мертвую петлю" радиуса $R=1000~{\rm M}$ с постоянной скоростью $v=400~{\rm km/v}$. Найти вес летчика массы $m=80~{\rm kr}$ в нижней, верхней и средней точках петли.

Вариант № 2

- 1. Найти вектор скорости и закон движения материальной точки массы m, если сила действующая на нее определяется соотношением $\vec{F} = (At + B\cos(\omega t))\vec{i} + (At^2 + C\sin(\omega t))\vec{j}$, где A, B, C, ω положительные постоянные. В начальный момент времени точка находилась в начале координат, с начальной скоростью $\vec{V}_0 = 0$.
- **2**. На тело массы m, лежащее на гладкой горизонтальной поверхности, в момент t=0 начала действовать сила, зависящая от времени как $F=kt^2$, где k -постоянная. Направление этой силы с перпендикуляром к поверхности составляет постоянный угол α . Найти:
- а) скорость тела в момент отрыва от плоскости;
- б) путь, пройденный телом к этому моменту.
- 3. Шарик, подвешенный на нити, качается в вертикальной плоскости так, что отношение модулей полных ускорений в крайнем и нижнем положениях равно четырем. Найти угол отклонения нити θ в крайнем положении.

Вариант № 3

- 1. Найти модуль и направление силы, действующей на частицу массы m, при ее движении в плоскости xy по закону: $x=At+Bte^{-\omega t},\ y=At^2+Cte^{-\omega t},$ где A,B,C,ω положительные постоянные.
- **2**. Пуля, пробив доску толщиной h, изменила свою скорость от V_0 до V. Найти время движения пули в доске, считая силу сопротивления пропорциональной модулю скорости.
- 3. Самолет делает "мертвую петлю" радиуса $R=1500~{\rm M}$ с постоянной скоростью $v=500~{\rm km/v}$. Найти вес летчика массы $m=90~{\rm kr}$ в нижней, верхней и средней точках петли.

Вариант № 4

- 1. Найти вектор скорости и закон движения материальной точки массы m, если сила действующая на нее определяется соотношением $\vec{F}=(At+Be^{-\omega t})\vec{i}+(At^2+Ce^{-\omega t})\vec{j}$, где A,B,C,ω положительные постоянные. В начальный момент времени точка находилась в начале координат, с начальной скоростью $\vec{V}_0=0$.
- **2**. На тело массы m, лежащее на гладкой горизонтальной поверхности, в момент t=0 начала действовать сила, зависящая от времени как $F=kt^3$, где k-постоянная. Направление этой силы с перпендикуляром к поверхности составляет постоянный угол α . Найти:
- а) скорость тела в момент отрыва от плоскости;
- б) путь, пройденный телом к этому моменту.
- 3. Шарик, подвешенный на нити, качается в вертикальной плоскости так, что отношение модулей полных ускорений в крайнем и нижнем положениях равно двум. Найти угол отклонения нити θ в крайнем положении.

Составитель: ассистент кафедры ОТ Φ _	Ю.П. Филиппов.